Prüfungsdauer: 150 Minuten

Abschlussprüfung 2004

an den Realschulen in Bayern

R4/R6

5 P

1 P

Mathematik II Nachtermin Aufgabe D 1

- D 1.0 Die Parabel p_1 hat die Gleichung $y = -(x-3)^2 + 5$ mit $\mathbb{G} = \mathbb{I}\mathbb{R} \times \mathbb{I}\mathbb{R}$. Die Parabel p_2 hat den Scheitelpunkt $S(5 \mid 8)$ und verläuft durch den Punkt $Q(-3 \mid -8)$.
- D 1.1 Zeigen Sie durch Berechnung, dass sich die Gleichung die Parabel p_2 wie folgt darstellen lässt: $y=-0,25x^2+2,5x+1,75$.

Erstellen Sie für die Parabel p_2 eine Wertetabelle für $x \in [0; 10]$ in Schritten von $\Delta x = 1$ und zeichnen Sie die Parabeln p_1 und p_2 in ein Koordinatensystem ein.

Für die Zeichnung: Längeneinheit 1 cm; $-1 \le x \le 11$; $-2 \le y \le 12$

D 1.2 Punkte $A_n\left(x\left|-x^2+6x-4\right.\right)$ und Punkte B_n liegen auf der Parabel p_1 . Die Abszisse der Punkte B_n ist stets um 2 größer als die Abszisse x der Punkte A_n . Bestätigen Sie durch Rechnung, dass sich die Koordinaten der Punkte B_n in Abhängigkeit von der Abszisse x der Punkte A_n folgendermaßen darstellen lassen: $B_n\left(x+2\left|-x^2+2x+4\right.\right)$.

D 1.3 Die Punkte A_n und B_n auf der Parabel p_1 sind zusammen mit Punkten C_n und D_n die Eckpunkte von Trapezen $A_nB_nC_nD_n$. Die Punkte $D_n\left(x\left|-0,25x^2+2,5x+1,75\right)\right)$ liegen auf der Parabel p_2 und haben dieselbe Abszisse x wie die Punkte A_n und es gilt: $[A_nD_n]\|[B_nC_n]$ und $\overline{B_nC_n}=8$ LE . Zeichnen Sie die Trapeze $A_1B_1C_1D_1$ für x=2,5 und $A_2B_2C_2D_2$ für x=3,5 in das Koordinatensystem zu 1.1 ein.

- D 1.4 Berechnen Sie auf zwei Stellen nach dem Komma gerundet das Winkelmaß α des Winkels $B_1A_1D_1$ des Trapezes $A_1B_1C_1D_1$.
- D 1.5 Bestimmen Sie, für welche Werte von x gilt: $\overline{A_nD_n} = \overline{B_nC_n}$. (Auf zwei Stellen nach den Komma runden.) [Teilergebnis: $\overline{A_nD_n}(x) = (0,75x^2 - 3,5x + 5,75)$ LE]
- D 1.6 Ermitteln Sie rechnerisch die kleinstmögliche Länge $\overline{A_0D_0}$ auf zwei Stellen nach dem Komma gerundet. Begründen Sie sodann, dass das zugehörige Trapez $A_0B_0C_0D_0$ den kleinstmöglichen Flächeninhalt hat.