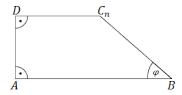
Mittlere-Reife-Prüfung 2013 Mathematik I Aufgabe A3

Aufgabe A3.

Die Trapeze $A\,B\,C_n\,D$ (siehe Skizze) haben die parallelen Seiten $[A\,B]$ und $[C_n\,D]$. Die Winkel $C_n\,B\,A$ haben das Maß φ mit $\varphi\in]21,80^\circ;90^\circ[$.

Es gilt: $\overline{AB} = 10$ cm; $\overline{AD} = 4$ cm; $\angle BAD = 90^{\circ}$.



Aufgabe A3.1 (1 Punkt)

Bestätigen Sie durch Rechnung die untere Intervallgrenze von φ .

Aufgabe A3.2 (2 Punkte)

Zeigen Sie, dass für den Flächeninhalt A der Trapeze ABC_nD in Abhängigkeit von φ gilt: $A(\varphi) = \left(40 - \frac{8}{\tan\varphi}\right) \text{ cm}^2$.

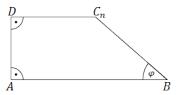
Aufgabe A3.3 (2 Punkte)

Für $\varphi=50^\circ$ entsteht das Trapez $A\,B\,C_1\,D$. Der Flächeninhalt des Trapezes $A\,B\,C_2\,D$ ist um 30% kleiner als der Flächeninhalt des Trapezes $A\,B\,C_1\,D$. Berechnen Sie das Maß φ des Winkels $C_2\,B\,A$ des Trapezes $A\,B\,C_2\,D$.

Lösung

Aufgabe A3.

Die Trapeze ABC_nD (siehe Skizze) haben die parallelen Seiten [AB] und $[C_nD]$. Die Winkel C_nBA haben das Maß φ mit $\varphi\in]21,80^\circ;90^\circ[$. Es gilt: $\overline{AB}=10$ cm; $\overline{AD}=4$ cm; $\angle BAD=90^\circ.$



Aufgabe A3.1 (1 Punkte)

Bestätigen Sie durch Rechnung die untere Intervallgrenze von φ .

Lösung zu Aufgabe A3.1

Abstand zweier Punkte

Gegeben: $\overline{AB} = 10 \text{ cm}; \overline{AD} = 4 \text{ cm}; \angle BAD = 90^{\circ}$

Zu beweisen: Untere Intervallgrenze $\varphi = 21.80^{\circ}$

Das Trapez ABC_nD wird zu einem Dreieck, wenn C_n zu D wird.

$$C_n$$
 A
 C_n
 φ
 A
 21.80°
 B

Erläuterung: Tangens eines Winkels

Der Tangens eines Winkels α ist ein Seitenverhältnis. $\tan\alpha = \frac{\text{Gegenkathete zu }\alpha}{\text{Ankathete zu }\alpha}$

Gilt nur in rechtwinkligen Dreiecken.

$$\begin{split} & \frac{\overline{AD}}{\overline{AB}} = \tan(\varphi) \\ & \varphi = \tan^{-1}\left(\frac{\overline{AD}}{\overline{AB}}\right) = \tan^{-1}\left(\frac{4 \text{ cm}}{10 \text{ cm}}\right) = \tan^{-1}(0,4) \\ & \varphi = 21,80^{\circ} \end{split}$$

 \Rightarrow Für $\varphi > 21,80^{\circ}$ existieren die Trapeze ABC_nD .

Aufgabe A3.2 (2 Punkte)

Zeigen Sie, dass für den Flächeninhalt A der Trapeze ABC_nD in Abhängigkeit von φ

gilt:
$$A(\varphi) = \left(40 - \frac{8}{\tan \varphi}\right) \text{ cm}^2.$$

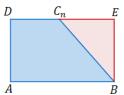
Lösung zu Aufgabe A3.2

Flächeninhalt eines Trapezes

Gegeben: $\overline{AB} = 10 \text{ cm}; \overline{AD} = 4 \text{ cm}; \angle BAD = 90^{\circ}; A_{ABC_nD} = A$

Zu beweisen:
$$A(\varphi) = \left(40 - \frac{8}{\tan(\varphi)}\right) \text{ cm}^2$$

Erläuterung: Erläuterung, Fläche eines Trapezes



Der Flächeninhalt des Trapezes ABC_nD wird hier dargestellt als Differenz der Flächeninhalte des Rechtecks ABED minus dem Dreieck BEC_n .

$$A = A_{ABED} - A_{BEC_n}$$

Erläuterung: Flächeninhalt eines rechtwinkligen Dreiecks

Da jedes Rechteck in zwei identische rechtwinklige Dreiecke zerlegt werden kann, so ist der Flächeninhalt eines rechtwinkligen Dreiecks genau die Hälfte des Flächeninhalts des korrespondierenden Rechtecks:

$$A = \frac{1}{2} \cdot a \cdot b$$

mit a, b als Seitenlängen des Rechtecks.

In diesem Fall ist $a = \overline{BE} = \overline{AD}$ und $b = \overline{EC_n}$

$$A = \left(\overline{A}\,\overline{B} \cdot \overline{A}\,\overline{D}\right) - \left(\frac{1}{2} \cdot \overline{A}\,\overline{D} \cdot \overline{E}\,\overline{C_n}\right)$$

Erläuterung: Tangens eines Winkels

Der Tangens eines Winkels α ist ein Seitenverhältnis.

$$\tan \alpha = \frac{\text{Gegenkathete zu } \alpha}{\text{Ankathete zu } \alpha}$$

Gilt nur in rechtwinkligen Dreiecken.

Die Länge der Strecke $[E\,C_n]$ kann also auch dargestellt werden als $\overline{E\,C_n}=\dfrac{\overline{A\,D}}{\tan(\varphi)}.$

$$A = (\overline{A} \, \overline{B} \cdot \overline{A} \, \overline{D}) - \left(\frac{1}{2} \cdot \overline{A} \, \overline{D}^2 \cdot \frac{1}{\tan(\varphi)}\right)$$
$$A = 40 \text{ cm}^2 - \frac{1}{2} \cdot 16 \text{ cm}^2 \cdot \frac{1}{\tan(\varphi)} = 40 \text{ cm}^2 - 8 \text{ cm}^2 \cdot \frac{1}{\tan(\varphi)}$$

Erläuterung: Erläuterung

Die gefundene Formel für A enthält noch die Variable φ . Damit kann A auch als Funktion von φ betrachtet werden.

$$A(\varphi) = \left(40 - \frac{8}{\tan(\varphi)}\right) \text{ cm}^2$$

Aufgabe A3.3 (2 Punkte)

Für $\varphi=50^\circ$ entsteht das Trapez $A\,B\,C_1\,D$. Der Flächeninhalt des Trapezes $A\,B\,C_2\,D$ ist um 30% kleiner als der Flächeninhalt des Trapezes $A\,B\,C_1\,D$. Berechnen Sie das Maß φ des Winkels $C_2\,B\,A$ des Trapezes $A\,B\,C_2\,D$.

Lösung zu Aufgabe A3.3

Winkel bestimmen

Gegeben: $A_{ABC_nD} = \left(40 - \frac{8}{\tan(\varphi)}\right) \text{ cm}^2; \varphi_1 = 50^{\circ}$

Gesucht: φ_2 , sodass $A_{ABC_2D} = 0, 7 \cdot A_{ABC_1D}$

Erläuterung: Gleichsetzen, Erläuterung

Um φ_2 zu bestimmen, beginnen wir mit dem Gleichsetzen der Funktionsterme für den Flächeninhalt und lösen nach φ_2 auf.

$$40 - \frac{8}{\tan(\varphi_2)} = 0,7 \cdot \left(40 - \frac{8}{\tan(\varphi_1)}\right) \quad |-40$$
$$-\frac{8}{\tan(\varphi_2)} = 28 - \frac{5,6}{\tan(\varphi_1)} - 40$$

$$-\frac{8}{\tan(\varphi_2)} = -12 - \frac{5,6}{\tan(\varphi_1)} \qquad | \cdot (-1)$$

$$\frac{8}{\tan(\varphi_2)} = 12 + \frac{5,6}{\tan(\varphi_1)} \qquad | \cdot \tan(\varphi_2)$$

$$8 = \tan(\varphi_2) \left[12 + \frac{5,6}{\tan(\varphi_1)} \right] \qquad | : \left[12 + \frac{5,6}{\tan(\varphi_1)} \right]$$

$$\tan (\varphi_2) = \frac{8}{12 + \frac{5.6}{\tan(\varphi_1)}} \quad |\tan^{-1}|$$

$$\varphi_2 = \tan^{-1} \left[\frac{8}{12 + \frac{5.6}{\tan(\varphi_1)}} \right] = \tan^{-1} \left[\frac{8}{12 + \frac{5.6}{\tan(50^\circ)}} \right] = \tan^{-1} (0, 4791)$$

$$\varphi_2 = 25, 60^\circ$$